A role for prolyl hydroxylase domain proteins in hippocampal synaptic plasticity.
نویسندگان
چکیده
Hypoxia-inducible factors (HIFs) are key transcriptional regulators that play a major role in oxygen homeostasis. HIF activity is tightly regulated by oxygen-dependent hydroxylases, which additionally require iron and 2-oxoglutarate as cofactors. Inhibition of these enzymes has become a novel target to modulate the hypoxic response for therapeutic benefit. Inhibition of prolyl-4-hydroxylase domains (PHDs) have been shown to delay neuronal cell death and protect against ischemic injury in the hippocampus. In this study we have examined the effects of prolyl hydroxylase inhibition on synaptic transmission and plasticity in the hippocampus. Field excitatory postsynaptic potentials (fEPSPs) and excitatory postsynaptic currents (EPSCs) were elicited by stimulation of the Schaffer collateral pathway in the CA1 region of the hippocampus. Treatment of rat hippocampal slices with low concentrations (10 µM) of the iron chelator deferosoxamine (DFO) or the 2-oxoglutarate analogue dimethyloxalyl glycine (DMOG) had no effect on fEPSP. In contrast, application of 1 mM DMOG resulted in a significant decrease in fEPSP slope. Antagonism of the NMDA receptor attenuated the effects of DMOG on baseline synaptic signalling. In rat hippocampal slices pretreated with DMOG and DFO the induction of long-term potentiation (LTP) by tetanic stimulation was strongly impaired. Similarly, neuronal knockout of the single PHD family member PHD2 prevented murine hippocampal LTP. Preconditioning of PHD2 deficient hippocampi with either DMOG, DFO, or the PHD specific inhibitor JNJ-42041935, did not further decrease LTP suggesting that DMOG and DFO influences synaptic plasticity primarily by inhibiting PHDs rather than unspecific effects. These findings provide striking evidence for a modulatory role of PHD proteins on synaptic plasticity in the hippocampus.
منابع مشابه
نقش سلول های گلیا در پاسخ سیناپسی پایه و شکل پذیری سیناپسی کوتاه مدت ناحیه CA1 هیپوکمپ
Background and purpose: Glial cells seem to play role in synaptic plasticity because they have the ability to release trophic factors and gliotransmitters and respond to neurotransmitters. They also play important role in synaptic space homeostasis. In this study, the role of hippocampal glial cells in baseline synaptic response and short term synaptic plasticity were investigated. Material...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملAllicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity
Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...
متن کاملMinocycline improves memory in a passive avoidance task following cerebral ischemia-reperfusion by enhancing hippocampal synaptic plasticity and restoring antioxidant enzyme activity in rats
Introduction: Oxidative stress plays a crucial role in the impairment of synaptic plasticity following cerebral ischemia which ultimately results in memory dysfunction. Hence, application of antioxidant agents could be beneficial in the management of memory deficit after brain ischemia. Minocycline is a tetracycline antibiotic with antioxidant effect. The main objective of this work was to asse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hippocampus
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2013